Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/175889
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThorneywork, Alice L.-
dc.contributor.authorGladrow, J.-
dc.contributor.authorQing, Yujia-
dc.contributor.authorRico Pastó, Marc-
dc.contributor.authorRitort Farran, Fèlix-
dc.contributor.authorBayley, Hagan-
dc.contributor.authorKolomeisky, Anatoly B.-
dc.contributor.authorKeyser, U.F.-
dc.date.accessioned2021-03-30T15:58:09Z-
dc.date.available2021-03-30T15:58:09Z-
dc.date.issued2020-04-01-
dc.identifier.issn2375-2548-
dc.identifier.urihttp://hdl.handle.net/2445/175889-
dc.description.abstractAll natural phenomena are governed by energy landscapes. However, the direct measurement of this fundamen-tal quantity remains challenging, particularly in complex systems involving intermediate states. Here, we uncover key details of the energy landscapes that underpin a range of experimental systems through quantitative analysis of first-passage time distributions. By combined study of colloidal dynamics in confinement, transport through a biological pore, and the folding kinetics of DNA hairpins, we demonstrate conclusively how a short-time, power-law regime of the first-passage time distribution reflects the number of intermediate states associated with each of these processes, despite their differing length scales, time scales, and interactions. We thereby establish a powerful method for investigating the underlying mechanisms of complex molecular processes.-
dc.format.extent6 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Association for the Advancement of Science-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1126/sciadv.aaz4642-
dc.relation.ispartofScience Advances, 2020, vol. 6, num. 18, p. eaaz4642-
dc.relation.urihttps://doi.org/10.1126/sciadv.aaz4642-
dc.rightscc-by-nc (c) Thorneywork, Alice L. et al., 2020-
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationMicrofluídica-
dc.subject.classificationCol·loides-
dc.subject.classificationCinètica química-
dc.subject.otherMicrofluidics-
dc.subject.otherColloids-
dc.subject.otherChemical kinetics-
dc.titleDirect detection of molecular intermediates from first-passage times-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec709676-
dc.date.updated2021-03-30T15:58:09Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/647144/EU//DesignerPores-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/674979/EU//NANOTRANS-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/294443/EU//COSIMO-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid32494675-
Appears in Collections:Publicacions de projectes de recerca finançats per la UE
Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
709676.pdf1.63 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons