Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/177854
Title: Analysis of neural networks. Applications to interpretability and uncertainty
Author: Marín Sánchez, Gabriel
Director/Tutor: Benseny, Antoni
Rubio Muñoz, Alberto
Keywords: Intel·ligència artificial
Treballs de fi de grau
Xarxes neuronals (Informàtica)
Sistemes experts (Informàtica)
Artificial intelligence
Bachelor's thesis
Neural networks (Computer science)
Expert systems (Computer science)
Issue Date: 22-Jun-2020
Abstract: [en] From image creation and pattern recognition to speech and text processing, the outstanding performance of neural networks in a wide variety of fields has made them a popular tool among researchers. However, the fact that we do not fully understand why their performance is so successful or how they operate converts this technology into a black-box model based on trial and error. In this work, we attempt to give deep neural networks a mathematical representation and present different examples and applications that bring light to the understanding of neural networks’ behaviour and usage.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Antoni Benseny i Alberto Rubio Muñoz
URI: http://hdl.handle.net/2445/177854
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
177854.pdfMemòria12.76 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons