Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/18821
Title: Continuous phase transition in a spin-glass model without time-reversal symmetry
Author: Parisi, G.
Picco, M.
Ritort Farran, Fèlix
Keywords: Física estadística
Termodinàmica
Sistemes no lineals
Propietats magnètiques
Equacions d'estat
Regla de les fases i equilibri
Transformacions de fase (Física estadística)
Statistical physics
Thermodynamics
Nonlinear systems
Magnetic properties
Equations of state
Phase rule and equilibrium
Phase transformations (Statistical physics)
Issue Date: 1999
Publisher: The American Physical Society
Abstract: We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.
Note: Reproducció del document publicat a: http://dx.doi.org/10.1103/PhysRevE.60.58
It is part of: Physical Review e, 1999, vol. 60, núm. 1, p. 58-68
URI: http://hdl.handle.net/2445/18821
ISSN: 1063-651X
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
143492.pdf216.21 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.