Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/189709
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCos Aguilera, Ignasi-
dc.contributor.advisorVives i Santa Eulàlia, Josep, 1963--
dc.contributor.authorOsa Bañales, David de la-
dc.date.accessioned2022-10-07T09:58:53Z-
dc.date.available2022-10-07T09:58:53Z-
dc.date.issued2022-06-13-
dc.identifier.urihttp://hdl.handle.net/2445/189709-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Ignasi Cos Aguilera i Josep Vives i Santa Eulàliaca
dc.description.abstract[en] How does the human brain work? How do different brain areas interact with each other when performing specific function? These questions have sharply increased in interest over the last decades, as the more it is known about human cognition and cognitive process distribution the more accurate some procedures will be, such as neuro-pathologies diagnosis, prediction of reaction to stimuli or influence of motivation/rewards on decisions. To analyze human cognition, neuroimaging techniques are commonly used, like Functional Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG) or Electroencephalograms (EEGs). The aim of this project is to build a theoretical model, able to capture the neural dynamics of cortical interactions, which we referred to as effective connectivity. Neural data are high-density EEGs, recorded during a decision-making task (Cos et al. 2022). This approach overcomes the limitations that are presented when directly using correlation based connectivity metrics. The framework we created consists of a model-based whole-brain effective connectivity, based on the multivariate Ornstein-Uhlenbeck (MOU) process (MOU-EC). The goal of the model, once fitted, is to provide a directed connectivity estimate that reflects the dynamical state of the EEG signals and a method to generate signals that follow the connectivity.ca
dc.format.extent34 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) David de la Osa Bañales, 2022-
dc.rightscodi: GPL (c) David de la Osa Bañales, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica-
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)ca
dc.subject.classificationCognicióca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationImatges mèdiquesca
dc.subject.classificationDistribució (Teoria de la probabilitat)ca
dc.subject.otherLearning classifier systemsen
dc.subject.otherCognitionen
dc.subject.otherComputer softwareen
dc.subject.otherImaging systems in medicineen
dc.subject.otherDistribution (Probability theory)en
dc.subject.otherBachelor's thesesen
dc.titleAn EEG based ‐ stochastic dynamical systems model of brain dynamicsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Enginyeria Informàtica
Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
codi.zipCodi font1.95 MBzipView/Open
tfg_osa_bañales_david_de_la.pdfMemòria4.01 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons