Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/191504
Title: Improved Performance of Biohybrid Muscle-Based Bio-Bots Doped with Piezoelectric Boron Nitride Nanotubes
Author: Mestre, Rafael
Fuentes, Judith
Lefaix, Laura
Wang, Jiaojiao
Guix, Maria
Murillo, Gonzalo
Bashir, Rashid
Sánchez, Samuel
Keywords: Robòtica en medicina
Músculs
Robotics in medicine
Muscles
Issue Date: 24-Jan-2023
Publisher: Wiley
Abstract: Biohybrid robots, or bio-bots, integrate living and synthetic materials following a synergistic strategy to acquire some of the unique properties of biological organisms, like adaptability or bio-sensing, which are difficult to obtain exclusively using artificial materials. Skeletal muscle is one of the preferred candidates to power bio-bots, enabling a wide variety of movements from walking to swimming. Conductive nanocomposites, like gold nanoparticles or graphene, can provide benefits to muscle cells by improving the scaffolds’ mechanical and conductive properties. Here, boron nitride nanotubes (BNNTs), with piezoelectric properties, are integrated in muscle-based bio-bots and an improvement in their force output and motion speed is demonstrated. A full characterization of the BNNTs is provided, and their piezoelectric behavior with piezometer and dynamometer measurements is confirmed. It is hypothesized that the improved performance is a result of an electric field generated by the nanocomposites due to stresses produced by the cells during differentiation. This hypothesis is backed with finite element simulations supporting that this stress can generate a non-zero electric field within the matrix. With this work, it is shown that the integration of nanocomposite into muscle-based bio-bots can improve their performance, paving the way toward stronger and faster bio-hybrid robots.
Note: Reproducció del document publicat a: https://doi.org/10.1002/admt.202200505
It is part of: Advanced Materials Technologies, 2023, vol. 8, num. 2, 2200505
URI: http://hdl.handle.net/2445/191504
Related resource: https://doi.org/10.1002/admt.202200505
ISSN: 2365-709X
Appears in Collections:Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
2022_AdvMatTec_Improved_SanchezS.pdf1.84 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons