Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/197102
Title: Biophysical and computational approaches to study ternary complexes: A 'cooperative relationship' to rationalize targeted protein degradation
Author: Ward, Jake A.
Perez Lopez, Carles
Mayor-Ruiz, Cristina
Keywords: Biologia computacional
Biofísica
Proteïnes
Computational biology
Biophysics
Proteins
Issue Date: 5-Apr-2023
Publisher: Wiley-VCH
Abstract: Degraders have illustrated that compound-induced proximity to E3 ubiquitin ligases can prompt the ubiquitination and degradation of disease-relevant proteins. Hence, this pharmacology is becoming a promising alternative and complement to available therapeutic interventions (e.g., inhibitors). Degraders rely on protein binding instead of inhibition and, hence, they hold the promise to broaden the druggable proteome. Biophysical and structural biology approaches have been the cornerstone of understanding and rationalizing degrader-induced ternary complex formation. Computational models have now started to harness the experimental data from these approaches with the aim to identify and rationally help design new degraders. This review outlines the current experimental and computational strategies used to study ternary complex formation and degradation and highlights the importance of effective crosstalk between these approaches in the advancement of the targeted protein degradation (TPD) field. As our understanding of the molecular features that govern drug-induced interactions grows, faster optimizations and superior therapeutic innovations for TPD and other proximity-inducing modalities are sure to follow.
Note: Reproducció del document publicat a: https://doi.org/10.1002/cbic.202300163
It is part of: Chembiochem, 2023, p. e202300163
URI: http://hdl.handle.net/2445/197102
Related resource: https://doi.org/10.1002/cbic.202300163
ISSN: 1439-7633
Appears in Collections:Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))

Files in This Item:
File Description SizeFormat 
Review_ChemBioChem_CMayor-Ruiz_2023.pdf1.87 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.