Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/198963
Title: Kaolinite structural modifications induced by mechanical activation
Author: Mañosa Bover, Jofre
Calvo de la Rosa, Jaume
Silvello, A. (Alessio)
Maldonado Alameda, Alex
Chimenos Ribera, Josep Ma.
Keywords: Caolí
Difracció de raigs X
Espectroscòpia infraroja
Kaolin
X-rays diffraction
Infrared spectroscopy
Issue Date: 22-Mar-2023
Publisher: Elsevier B.V.
Abstract: This study presents novel characterisation techniques to evaluate the effects of mechanical activation (MA) on the kaolinite structure. MA was achieved with a planetary ball mill at various times and rotation speeds to get different activation degrees. A thermal activation was performed for comparison purposes. The results of X-ray diffraction and selective area electron diffraction demonstrated that the kaolinite content was significantly reduced as the amorphous phase increased. Illite, K-feldspars, and quartz impurities were extensively modified as well. The morphology of kaolinite particles is altered. Furthermore, the mechanical treatments significantly affected the hydroxyls, losing bonding strength with the structure, as stated with 1H nuclear magnetic resonance. Thermogravimetric analysis and infrared spectroscopy also revealed that water molecules could be formed due to the reaction of hydroxyls between them or with the atmosphere. This work improves the comprehension of MA on kaolin by clearly confirming with new techniques that the mechanical treatments distort the kaolinite structure.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.clay.2023.106918
It is part of: Applied Clay Science, 2023, vol. 238, p. 1-11
URI: http://hdl.handle.net/2445/198963
Related resource: https://doi.org/10.1016/j.clay.2023.106918
ISSN: 0169-1317
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
732940.pdf2.68 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons