Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/200399
Title: Local characterization of the polarization state of 3D electromagnetic fields: an alternative approach
Author: Martínez-Herrero, Rosario
Maluenda Niubó, David
Aviñoá, Marcos
Carnicer González, Arturo
Juvells Prades, Ignacio
Sanz, Ángel S.
Keywords: Camps electromagnètics
Polarització (Llum)
Microscòpia
Electromagnetic fields
Polarization (Light)
Microscopy
Issue Date: 28-Jun-2023
Publisher: The Shangai Institute of Optics and Fine Mechanics, and The Optical Society of America
Abstract: A precise knowledge of the polarization state of light is crucial in technologies that involve the generation and application of structured light fields. The implementation of efficient methods to determine and characterize polarization states is mandatory; more importantly, these structured light fields must be at any spatial location at a low expense. Here, we introduce a new characterization method that relies on a rather convenient description of electric fields without neglecting their 3D nature. This method is particularly suitable for highly focused fields, which exhibit important polarization contributions along their propagation direction in the neighborhood of the focal region; i.e., the contributions out of the planes transverse to the optical axis, conventionally used to specify the polarization state of these fields. As shown, the method allows the extraction of information about the three field components at relatively low computational and experimental costs. Furthermore, it also allows characterization of the polarization state of a field in a rather simple manner. To check the feasibility and reliability of the method, we determined both analytically and experimentally the local polarization states for a series of benchmark input fields with it, finding excellent agreement between the theory and experiment.
Note: Reproducció del document publicat a: https://doi.org/10.1364/PRJ.488703
It is part of: Photonics Research, 2023, vol. 11, num. 7, p. 1326-1338
URI: http://hdl.handle.net/2445/200399
Related resource: https://doi.org/10.1364/PRJ.488703
ISSN: 2327-9125
Appears in Collections:Articles publicats en revistes (Física Aplicada)

Files in This Item:
File Description SizeFormat 
737063.pdf1.8 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.