Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/22076
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPuntes, Víctorcat
dc.contributor.authorBatlle Gelabert, Xaviercat
dc.contributor.authorLabarta, Amílcarcat
dc.date.accessioned2012-02-16T08:49:30Z-
dc.date.available2012-02-16T08:49:30Z-
dc.date.issued1999ca
dc.identifier.issn0021-8979ca
dc.identifier.urihttp://hdl.handle.net/2445/22076-
dc.description.abstractCoFe–Cu granular films with ferromagnetic content ranging from 0.10 to 0.33 by volume were prepared by radio frequency sputtering. As-cast samples were rapidly annealed at various temperatures up to 750 °C to promote the segregation of CoFe particles within the metallic matrix. Magnetic and transport properties suggested that this family of samples may be classified into three groups: (i) below about 0.20 volume content of CoFe, all samples display the typical features of a granular solid constituted by a random distribution of nanometric CoFe particles within a Cu matrix, and the maximum magnetoresistance is about 20% at low temperature (giant magnetoresistance); (ii) for as-cast samples within 0.20 and 0.30 of volume concentration, magnetoresistance and magnetization display complex bimodal behavior and large metastable effects associated with the interparticle interactions, which stabilize a domain-like microstructure well below the volume percolation threshold (0.55), as already observed in CoFe–Ag(Cu) granular alloys. As a consequence of the large magnetic correlations, magnetoresistance is very low (1%–3%). Through annealing, the microstructure and therefore the transport properties evolve to those of a classical giant magnetoresistance system with large particles; and (iii) above about 0.30 of volume content (and still below the volume percolation threshold), as-cast samples display both anisotropic and giant magnetoresistance, as also observed in other granular alloys. Annealing leads to complete segregation and to the formation of large magnetic particles, which results in a transition from mixed behavior of both anisotropic and giant magnetoresistance (GMR) regimes to a giant magnetoresistance regime, with a maximum GMR of about 7%.-
dc.format.extent8 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengeng
dc.publisherAmerican Institute of Physics-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1063/1.369357-
dc.relation.ispartofJournal of Applied Physics, 1999, vol. 85, núm. 10, p. 7328-7335-
dc.relation.urihttp://dx.doi.org/10.1063/1.369357-
dc.rights(c) American Institute of Physics, 1999-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationNanoestructurescat
dc.subject.classificationMaterials magnèticscat
dc.subject.classificationMatèria condensadacat
dc.subject.classificationFerromagnetismecat
dc.subject.classificationMagnetismecat
dc.subject.classificationMagnetoresistènciacat
dc.subject.otherNanostructureseng
dc.subject.otherMagnetic materialseng
dc.subject.otherCondensed mattereng
dc.subject.otherFerromagnetismeng
dc.subject.otherMagnetismeng
dc.subject.otherMagnetoresistanceeng
dc.titleCoFe-Cu granular alloys: From noninteracting particles to magnetic percolationeng
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec137632-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
137632.pdf437 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.