Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/24583
Title: Lagrangian-Hamiltonian unified formalism for field theory
Author: Echeverría Enríquez, Arturo
López, Carlos
Marín Solano, Jesús
Muñoz Lecanda, Miguel Carlos
Román Roy, Narciso
Keywords: Mecànica
Equacions en derivades parcials
Teoria de camps (Física)
Mechanics
Partial differential equations
Field theory
Issue Date: 2004
Publisher: American Institute of Physics
Abstract: The RuskSkinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations. 2004 American Institute of Physics.
Note: Reproducció digital del document proporcionada per AIP i http://dx.doi.org/10.1063/1.1628384
It is part of: Journal of Mathematical Physics, 2004, vol. 45, num. 1, p. 360-380
Related resource: http://dx.doi.org/10.1063/1.1628384
URI: http://hdl.handle.net/2445/24583
ISSN: 0022-2488
Appears in Collections:Articles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial)

Files in This Item:
File Description SizeFormat 
510892.pdf235.7 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.