Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/24584
Title: Statistical mechanical theory of an oscillating isolated system: The relaxation to equilibrium
Author: Pérez Madrid, Agustín
Keywords: Mecànica estadística
Processos estocàstics
Entropia
Termodinàmica
Equació de Fokker-Planck
Statistical mechanics
Stochastic processes
Entropy
Thermodynamics
Fokker-Planck equation
Issue Date: 2007
Publisher: American Institute of Physics
Abstract: In this Contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion, in general, and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n ? N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime, we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function.
Note: Reproducció del document proporcionada per AIP i http://dx.doi.org/10.1063/1.2800165
It is part of: Journal of Mathematical Physics, 2007, vol. 48, p. 103302
Related resource: http://dx.doi.org/10.1063/1.2800165
URI: http://hdl.handle.net/2445/24584
ISSN: 0022-2488
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
558293.pdf120.56 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.