Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/48703
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartínez Boubeta, José Carlos-
dc.contributor.authorSimeonidis, Konstantinos-
dc.contributor.authorMakridis, Antonios-
dc.contributor.authorAngelakeris, Makis-
dc.contributor.authorIglesias, Òscar-
dc.contributor.authorGuardia, Pablo-
dc.contributor.authorCabot i Codina, Andreu-
dc.contributor.authorYedra Cardona, Lluís-
dc.contributor.authorEstradé Albiol, Sònia-
dc.contributor.authorPeiró Martínez, Francisca-
dc.contributor.authorSaghi, Zineb-
dc.contributor.authorMidgley, Paul A.-
dc.contributor.authorConde-Leborán, Iván-
dc.contributor.authorSerantes, David-
dc.contributor.authorBaldomir, Daniel-
dc.date.accessioned2014-01-07T12:55:59Z-
dc.date.available2014-01-07T12:55:59Z-
dc.date.issued2013-04-11-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/2445/48703-
dc.description.abstractThe performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.-
dc.format.extent8 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1038/srep01652-
dc.relation.ispartofScientific Reports, 2013, vol. 3, num. 1652, p. 1652-1-1652-8-
dc.relation.urihttp://dx.doi.org/10.1038/srep01652-
dc.rightscc-by-nc-nd (c) Martinez-Boubeta, Carlos et al., 2013-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationCàncer-
dc.subject.classificationNanotecnologia-
dc.subject.classificationNanopartícules-
dc.subject.classificationPropietats magnètiques-
dc.subject.classificationMaterials magnètics-
dc.subject.classificationCalor-
dc.subject.classificationTerapèutica-
dc.subject.otherCancer-
dc.subject.otherNanotechnology-
dc.subject.otherNanoparticles-
dc.subject.otherMagnetic properties-
dc.subject.otherMagnetic materials-
dc.subject.otherHeat-
dc.subject.otherTherapeutics-
dc.titleLearning form Nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications.-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec620505-
dc.date.updated2014-01-07T12:55:59Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/291522/EU//3DIMAGE-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid23576006-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
620505.pdf3.43 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons