Please use this identifier to cite or link to this item:
Title: Spectral properties of the Laplacian of multiplex networks.
Author: Solé-Ribalta, A.
De Domenico, M. (Manlio), 1984-
Kouvaris, Nikos E.
Díaz Guilera, Albert
Gómez, S.
Arenas, Àlex
Keywords: Topologia
Xarxes socials
Teoria de grafs
Social networks
Graph theory
Issue Date: 16-Sep-2013
Publisher: American Physical Society
Abstract: One of the more challenging tasks in the understanding of dynamical properties of models on top of complex networks is to capture the precise role of multiplex topologies. In a recent paper, Gómez et al. [ Phys. Rev. Lett. 110 028701 (2013)], some of the authors proposed a framework for the study of diffusion processes in such networks. Here, we extend the previous framework to deal with general configurations in several layers of networks and analyze the behavior of the spectrum of the Laplacian of the full multiplex. We derive an interesting decoupling of the problem that allow us to unravel the role played by the interconnections of the multiplex in the dynamical processes on top of them. Capitalizing on this decoupling we perform an asymptotic analysis that allow us to derive analytical expressions for the full spectrum of eigenvalues. This spectrum is used to gain insight into physical phenomena on top of multiplex, specifically, diffusion processes and synchronizability.
Note: Reproducció del document publicat a:
It is part of: Physical Review E, 2013, vol. 88, p. 032807-1-032807-6
Related resource:
ISSN: 1539-3755
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
633611.pdf532.5 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.