Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/57954
Title: Networks of noisy oscillators with correlated degree and frequency dispersion
Author: Sonnenschein, Bernard
Sagués i Mestre, Francesc
Schimansky-Geier, Lutz, 1950-
Keywords: Sistemes no lineals
Matèria condensada
Física estadística
Física de l'estat sòlid
Nonlinear systems
Condensed matter
Statistical physics
Solid state physics
Issue Date: 16-Jan-2013
Publisher: Springer Verlag
Abstract: We investigate how correlations between the diversity of the connectivity of networks and the dynamics at their nodes affect the macroscopic behavior. In particular, we study the synchronization transition of coupled stochastic phase oscillators that represent the node dynamics. Crucially in our work, the variability in the number of connections of the nodes is correlated with the width of the frequency distribution of the oscillators. By numerical simulations on Erdös-Rényi networks, where the frequencies of the oscillators are Gaussian distributed, we make the counterintuitive observation that an increase in the strength of the correlation is accompanied by an increase in the critical coupling strength for the onset of synchronization. We further observe that the critical coupling can solely depend on the average number of connections or even completely lose its dependence on the network connectivity. Only beyond this state, a weighted mean-field approximation breaks down. If noise is present, the correlations have to be stronger to yield similar observations.
Note: Reproducció del document publicat a: http://dx.doi.org/10.1140/epjb/e2012-31026-x
It is part of: European Physical Journal B, 2013, vol. 86, num. 12, p. 1-6
Related resource: http://dx.doi.org/10.1140/epjb/e2012-31026-x
URI: http://hdl.handle.net/2445/57954
ISSN: 1434-6028
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
620692.pdf242.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.