Please use this identifier to cite or link to this item:
Title: Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds
Author: Hernández-Bennets, Victor
Schaffernicht, Erik
Pomareda Sesé, Victor
Lilienthal, Achim J.
Marco Colás, Santiago
Trincavelli, Marco
Keywords: Seguiment ambiental
Detectors de gasos
Environmental monitoring
Gas detectors
Issue Date: 17-Sep-2014
Publisher: MDPI
Abstract: In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.
Note: Reproducció del document publicat a:
It is part of: Sensors, 2014, vol. 14, num. 9, p. 17331-17352
Related resource:
ISSN: 1424-8220
Appears in Collections:Articles publicats en revistes (Electrònica)

Files in This Item:
File Description SizeFormat 
646599.pdf1.73 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons