Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/69415
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSerrano Moral, Ma. Ángeles (María Ángeles)-
dc.contributor.authorRios, Paolo de los-
dc.date.accessioned2016-02-15T12:09:47Z-
dc.date.available2016-02-15T12:09:47Z-
dc.date.issued2008-11-05-
dc.identifier.issn1932-6203-
dc.identifier.urihttp://hdl.handle.net/2445/69415-
dc.description.abstractThe large-scale structure of complex systems is intimately related to their functionality and evolution. In particular, global transport processes in flow networks rely on the presence of directed pathways from input to output nodes and edges, which organize in macroscopic connected components. However, the precise relation between such structures and functional or evolutionary aspects remains to be understood. Here, we investigate which are the constraints that the global structure of directed networks imposes on transport phenomena. We define quantitatively under minimal assumptions the structural efficiency of networks to determine how robust communication between the core and the peripheral components through interface edges could be. Furthermore, we assess that optimal topologies in terms of access to the core should look like "hairy balls" so to minimize bottleneck effects and the sensitivity to failures. We illustrate our investigation with the analysis of three real networks with very different purposes and shaped by very different dynamics and time-scales-the Internet customer-provider set of relationships, the nervous system of the worm Caenorhabditis elegans, and the metabolism of the bacterium Escherichia coli. Our findings prove that different global connectivity structures result in different levels of structural efficiency. In particular, biological networks seem to be close to the optimal layout.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherPublic Library of Science (PLoS)-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1371/journal.pone.0003654-
dc.relation.ispartofPLoS One, 2008, vol. 3, p. e3654-
dc.relation.urihttp://dx.doi.org/10.1371/journal.pone.0003654-
dc.rightscc-by (c) Serrano Moral, Ma. Ángeles (María Ángeles) et al., 2008-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationBiologia de sistemes-
dc.subject.classificationTransport biològic-
dc.subject.classificationEscheríchia coli-
dc.subject.otherSystems biology-
dc.subject.otherBiological transport-
dc.subject.otherEscherichia coli-
dc.titleStructural efficiency of percolated landscapes in flow networks-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec567467-
dc.date.updated2016-02-15T12:09:47Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid18985157-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
567467.pdf479.73 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons