Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/7622
Title: Killing vector fields and holonomy algebras
Author: Currás Bosch, Carlos
Keywords: Camps vectorials
Àlgebra
Vector fields
Algebra
Issue Date: 1984
Publisher: American Mathematical Society
Abstract: We prove that for each Killing vector field $ X$ on a complete Riemannian manifold, whose orthogonal distribution is involutive, the $ (1,1)$ skew-symmetric operator $ {A_X}$ associated to $ X$ by $ {A_X} = {L_X} - {\nabla _X}$ lies in the holonomy algebra at each point. By using the same techniques, we also study when that operator lies in the infinitesimal and local holonomy algebras respectively.
Note: Reproducció digital del document publicat en format paper, proporcionada per JSTOR http://www.jstor.org/stable/2044677.
It is part of: Proceedings of the American Mathematical Society, 1984, vol. 90, núm. 1, p. 97-102.
Related resource: http://doi.org/10.1090/S0002-9939-1984-0722424-6
URI: http://hdl.handle.net/2445/7622
ISSN: 1088-6826
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
2623.pdf515.92 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.