Please use this identifier to cite or link to this item:
Title: Nonequilibrium Ising models with competing, reaction-diffusion dynamics
Author: Garrido, P. L.
Marro, Joaquín
González-Miranda, J. M. (Jesús Manuel)
Keywords: Transformacions de fase (Física estadística)
Teoria dels reticles
Processos irreversibles
Model d'Ising
Phase transformations (Statistical physics)
Lattice theory
Irreversible processes
Ising model
Issue Date: 1989
Publisher: The American Physical Society
Abstract: We study the phase diagram and other general macroscopic properties of an interacting spin (or particle) system out of equilibrium, namely, a reaction-diffusion Ising model whose time evolution occurs as a consequence of a combination of spin-flip (Glauber) and spin-exchange (Kawasaki) processes. The Glauber rate at site x when the configuration is s, say c(s;x), satisfies detailed balance at a reciprocal temperature β, while the Kawasaki rate for the interchange between nearest-neighbor sites x and y, Γc(s;x,y), satisfies detailed balance at temperature β’. We derive hydrodynamic-type macroscopic equations from the stochastic microscopic model for β’,β≥0 and large Γ when time and space are rescaled by Γ and √Γ , respectively, and study the homogeneous steady solutions of those equations when Γ→∞. We state some general theorems for β’=0 and solve explicitly the model with different choices c(s;x) for systems of arbitrary dimension d when β’=0 and also for d=1 when β’≠0. We also describe new Monte Carlo data for finite Γ, β’=0, and d=1,2. The latter suggests, in particular, the existence of phase transitions for d=1, finite Γ, and some choices for c(s;x).
Note: Reproducció digital del document publicat en format paper, proporcionada per PROLA i
It is part of: Physical Review A, 1989, vol. 40, núm. 10, p. 5802 - 5814.
Related resource:
ISSN: 0953-8984
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
501964.pdf1.8 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.