Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/97490
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMonereo Cuscó, Oriol-
dc.contributor.authorCasals Guillén, Olga-
dc.contributor.authorPrades García, Juan Daniel-
dc.contributor.authorCirera Hernández, Albert-
dc.date.accessioned2016-04-15T11:52:37Z-
dc.date.available2018-04-30T22:01:13Z-
dc.date.issued2016-04-
dc.identifier.issn0925-4005-
dc.identifier.urihttp://hdl.handle.net/2445/97490-
dc.description.abstractSensor signal instability and drift are still unresolved challenges in conductometric gas sensors. Here, the use of self-heating effect to operate a gas sensor in a pulsed temperature modulation mode (pulsed self-heating operation) is presented as an effective method to enhance signal stability and reduce consumption figures down to a few W. The sensor operation temperature was pulsed periodically between two levels, obtaining two different sensing states from one single device driven with self-heating, i.e. free of heater. The signal differences between both operating points correlated well with gas concentrations and displayed no drift. This methodology is exemplified with a thorough study of the response of carbon nanofibers to humidity. Specifically, after analyzing the influence of the pulse characteristics (i.e. temperature variation, pulse period and pulse duty cycle) on the sensor performance, thumb rules to select suitable pulsing conditions are provided. The methodology is successfully extended to other target gases, such as NO2 and NH3. Finally, its implementation in a real-time sensing system with low computational requirements is demonstrated and discussed in detail.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.snb.2015.11.049-
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1016/j.snb.2015.11.049-
dc.relation.ispartofSensors and Actuators B-Chemical, 2016, vol. 226, p. 254-265-
dc.relation.urihttp://dx.doi.org/10.1016/j.snb.2015.11.049-
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2016-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationMaterials nanoestructurats-
dc.subject.classificationDetectors de gasos-
dc.subject.otherNanostructured materials-
dc.subject.otherGas detectors-
dc.titleSelf-heating in pulsed mode for signal quality improvement: application to carbon nanostructures-based sensors-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec659360-
dc.date.updated2016-04-15T11:52:42Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/336917/EU//BETTERSENSE-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
659360.pdf3.13 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons