Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/102010
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHartshorne, Robin-
dc.contributor.authorMiró-Roig, Rosa M. (Rosa Maria)-
dc.date.accessioned2016-09-21T07:58:05Z-
dc.date.available2017-08-31T22:01:24Z-
dc.date.issued2015-08-
dc.identifier.issn0022-4049-
dc.identifier.urihttps://hdl.handle.net/2445/102010-
dc.description.abstractBezout's theorem gives us the degree of intersection of two properly intersecting projective varieties. As two curves in $\mathbb{P}$ never intersect properly, Bezout's theorem cannot be directly used to bound the number of intersection points of such curves. In this work, we bound the maximum number of intersection points of two integral ACM curves in $\mathbb{P}$. The bound that we give is in many cases optimal as a function of only the degrees and the initial degrees of the curves.-
dc.format.extent19 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1016/j.jpaa.2014.10.009-
dc.relation.ispartofJournal of Pure and Applied Algebra, 2015, vol. 219, num. 8, p. 3195-3213-
dc.relation.urihttp://dx.doi.org/10.1016/j.jpaa.2014.10.009-
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2015-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationGeometria algebraica-
dc.subject.classificationCorbes-
dc.subject.otherAlgebraic geometry-
dc.subject.otherCurves-
dc.titleOn the intersection of ACM curves in $\mathbb{P}$-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec649973-
dc.date.updated2016-09-21T07:58:10Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
649973.pdf346.17 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons