Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/104313
Full metadata record
DC FieldValueLanguage
dc.contributor.authorScheler, Ulschan-
dc.contributor.authorBrandt, Wolfgang-
dc.contributor.authorPorzel, Andrea-
dc.contributor.authorRothe, Kathleen-
dc.contributor.authorManzano Alías, David-
dc.contributor.authorBozic, Dragana-
dc.contributor.authorPapaefthimiou, Dimitra-
dc.contributor.authorBalcke, Gerd Ulrich-
dc.contributor.authorHenning, Anja-
dc.contributor.authorLohse, Swanhild-
dc.contributor.authorMarillonnet, Sylvestre-
dc.contributor.authorKanellis, Angelos K.-
dc.contributor.authorFerrer i Prats, Albert-
dc.contributor.authorTissier, Alain-
dc.date.accessioned2016-11-30T17:35:42Z-
dc.date.available2016-11-30T17:35:42Z-
dc.date.issued2016-10-05-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/2445/104313-
dc.description.abstractRosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.-
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/ncomms12942-
dc.relation.ispartofNature Communications, 2016, vol. 7, p. 1-11-
dc.relation.urihttps://doi.org/10.1038/ncomms12942-
dc.rightscc-by (c) Scheler, Ulschan et al., 2016-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Bioquímica i Fisiologia)-
dc.subject.classificationAdditius alimentaris-
dc.subject.classificationLlevats (Botànica)-
dc.subject.classificationBiosíntesi-
dc.subject.otherFood additives-
dc.subject.otherYeast fungi-
dc.subject.otherBiosynthesis-
dc.titleElucidation of the biosynthesis of carnosic acid and its reconstitution in yeast-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec664512-
dc.date.updated2016-11-30T17:35:47Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/227448/EU//TERPMED-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid27703160-
Appears in Collections:Articles publicats en revistes (Bioquímica i Fisiologia)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
664512.pdf934.71 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons