Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPérez Reche, Francisco Josécat
dc.contributor.authorVives i Santa-Eulàlia, Eduardcat
dc.description.abstractA numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.eng
dc.publisherThe American Physical Societyeng
dc.relation.isformatofReproducció digital del document publicat en format paper, proporcionada per PROLA i
dc.relation.ispartofPhysical Review B, 2003, vol. 67, núm. 13, p. 134421-1-134421-16eng
dc.rights(c) The American Physical Society, 2003eng
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)-
dc.subject.classificationFenòmens crítics (Física)cat
dc.subject.classificationModel d'Isingcat
dc.subject.classificationVidres de spincat
dc.subject.otherCritical phenomena (Physics)eng
dc.subject.otherIsing modeleng
dc.subject.otherSpin glasseseng
dc.titleFinite-size scaling analysis of the avalanches in the three-dimensional Gaussian random-field Ising model with metastable dynamicseng
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
513165.pdf290.93 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.