Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/11021
Title: | Average ground-state energy of finite Fermi systems |
Author: | Centelles Aixalà, Mario Leboeuf, P. Monastra, A. G. Roccia, J. Schuck, Peter Viñas Gausí, Xavier |
Keywords: | Estructura nuclear Física nuclear Mecànica estadística Nuclear structure Nuclear physics Statistical mechanics |
Issue Date: | 2006 |
Publisher: | The American Physical Society |
Abstract: | Semiclassical theories such as the Thomas-Fermi and Wigner-Kirkwood methods give a good description of the smooth average part of the total energy of a Fermi gas in some external potential when the chemical potential is varied. However, in systems with a fixed number of particles N, these methods overbind the actual average of the quantum energy as N is varied. We describe a theory that accounts for this effect. Numerical illustrations are discussed for fermions trapped in a harmonic oscillator potential and in a hard-wall cavity, and for self-consistent calculations of atomic nuclei. In the latter case, the influence of deformations on the average behavior of the energy is also considered. |
Note: | Reproducció digital del document publicat en format paper, proporcionada per PROLA i http://dx.doi.org/10.1103/PhysRevC.74.034332 |
It is part of: | Physical Review C, 2006, vol. 74, núm. 3, p. 034332-1-034332-9 |
URI: | https://hdl.handle.net/2445/11021 |
Related resource: | http://dx.doi.org/10.1103/PhysRevC.74.034332 |
ISSN: | 0556-2813 |
Appears in Collections: | Articles publicats en revistes (Física Quàntica i Astrofísica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
542422.pdf | 427.79 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.