Please use this identifier to cite or link to this item:
Title: Kissing number
Author: Torres Serra, Miquel
Director/Tutor: Naranjo del Val, Juan Carlos
Keywords: Esfera
Treballs de fi de grau
Trigonometria esfèrica
Varietats topològiques de dimensió 3
Varietats topològiques de dimensió 4
Bachelor's theses
Spherical trigonometry
Three-manifolds (Topology)
Four-manifolds (Topology)
Issue Date: 27-Jun-2016
Abstract: The kissing number problem is a classic problem related to the Kepler conjecture and which was already the subject of discussion between David Gregory and Isaac Newton. The problem asks for the value of $κ(n)$, which is the maximal number of equal radius and nonoverlapping spheres in n-dimensional space that can touch a fixed sphere of the same radius? The answer is known for n = 1, 2, 3, 4, 8, 24, in this work we will study the proof of Oleg R. Musin in the three dimensional case and discuss his strategy in the four dimensional one.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Juan Carlos Naranjo del Val
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria873.82 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons