Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/111235
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBolancé Losilla, Catalina-
dc.date.accessioned2017-05-18T11:49:19Z-
dc.date.available2017-05-18T11:49:19Z-
dc.date.issued2010-
dc.identifier.issn1696-2281-
dc.identifier.urihttps://hdl.handle.net/2445/111235-
dc.description.abstractA double transformation kernel density estimator that is suitable for heavy-tailed distributions is presented. Using a double transformation, an asymptotically optimal bandwidth parameter can be calculated when minimizing the expression of the asymptotic mean integrated squared error of the transformed variable. Simulation results are presented showing that this approach performs better than existing alternatives. An application to insurance claim cost data is included.-
dc.format.extent16 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherInstitut d'Estadística de Catalunya-
dc.relation.isformatofReproducció del document publicat a: http://www.raco.cat/index.php/SORT/article/view/217214-
dc.relation.ispartofSort (Statistics and Operations Research Transactions), 2010, vol. 34, num. 2, p. 223-238-
dc.rightscc-by-nc-nd (c) Bolancé Losilla, Catalina, 2010-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)-
dc.subject.classificationEconometria-
dc.subject.classificationAnàlisi funcional-
dc.subject.otherEconometrics-
dc.subject.otherFunctional analysis-
dc.titleOptimal Inverse Beta (3,3) Transformation in Kernel Density Estimation-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec592407-
dc.date.updated2017-05-18T11:49:20Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Econometria, Estadística i Economia Aplicada)

Files in This Item:
File Description SizeFormat 
592407.pdf749.5 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons