Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/119256
Title: | Acyclicity in Algebraic K-theory |
Author: | Asensio Abella, Andrés |
Director/Tutor: | Casacuberta, Carles |
Keywords: | K-teoria Espais topològics Treballs de fi de màster Anells commutatius K-theory Topological spaces Master's theses |
Issue Date: | 11-Sep-2016 |
Abstract: | The central topic of this work is the concept of acyclic spaces in topological K-theory and their analogues in algebraic K-theory. We start by describing topological K-theory and some basic results, such as representability by a spectrum. Next we discuss algebraic K-theory and some of its properties, including Swan’s theorem, followed by the topological tools required to construct higher algebraic K-theory by means of Quillen’s plus-construction. Finally, we describe a class of rings whose algebraic K-theory groups vanish in all dimensions. In fact each ring $R$ admits a cone $CR$ with $K_i (CR) = 0$ for all i and a suspension $SR$ that is used to define negative K-theory groups of R in analogy with the topological case. |
Note: | Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2016, Director: Carles Casacuberta |
URI: | https://hdl.handle.net/2445/119256 |
Appears in Collections: | Màster Oficial - Matemàtica Avançada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
memoria.pdf | Memòria | 1.29 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License