Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/121063
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSoria de Diego, F. Javier-
dc.contributor.authorArias García, Sergi-
dc.date.accessioned2018-03-23T11:38:52Z-
dc.date.available2018-03-23T11:38:52Z-
dc.date.issued2017-06-19-
dc.identifier.urihttps://hdl.handle.net/2445/121063-
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2017, Director: F. Javier Soria de Diegoca
dc.description.abstractThis project revolves around Hardy’s integral inequality, proved by G. H. Hardy in 1925. This inequality has been studied by a large number of authors during the twentieth century and has motivated some important lines of study which are currently active. We study the classical Hardy’s integral inequality and its generalizations. We analyse some of the first results including weighted inequalities and prove the key theorem of B. Muckenhoupt, who characterized Hardy’s integral inequality with weights for the diagonal case in 1972. After this fundamental result, different authors considered the general context and new characterizations appeared until closing definitely the problem in 2000. Also we study Hardy’s integral inequality in the cone of monotone functions. This point of view is really interesting and has a lot of surprising consequences. For example, M. A. Ariño and B. Muckenhoupt realized in 1990 that Hardy’s inequality in the cone of monotone functions is equivalent to the boundedness of the Hardy-Littlewood maximal operator between Lorentz spaces. Just after E. Sawyer proved that the classical Lorentz space $\Lambda ^{p}(w)$ is normable if, and only if, Hardy’s integral inequality in the cone of monotone functions is satisfied for $w$. We study also the normability of both spaces $\Lambda^{p} (w)$ and $\Lambda^{p,\infty} (w)$ in terms of the boundedness of the maximal operator.ca
dc.format.extent91 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Sergi Arias Garcı́a, 2017-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.sourceMàster Oficial - Matemàtica Avançada-
dc.subject.classificationDesigualtats (Matemàtica)cat
dc.subject.classificationInterpolació (Matemàtica)cat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationEspais de Lorentzca
dc.subject.classificationEspais funcionalsca
dc.subject.classificationAnàlisi harmònicaca
dc.subject.otherInequalities (Mathematics)eng
dc.subject.otherInterpolationeng
dc.subject.otherMaster's theseseng
dc.subject.otherLorentz spacesen
dc.subject.otherFunction spacesen
dc.subject.otherHarmonic analysisen
dc.titleWeighted inequalities for the Hardy operatorca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria874.34 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons