Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/122266
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGispert Brasó, Joan-
dc.contributor.authorOrtega Aguasca, Marc Alexis-
dc.date.accessioned2018-05-10T08:17:20Z-
dc.date.available2018-05-10T08:17:20Z-
dc.date.issued2017-06-28-
dc.identifier.urihttps://hdl.handle.net/2445/122266-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Joan Gispert Brasóca
dc.description.abstract[en] Birkhoff’s Theorem states that let K be a class of algebras, then K is an equational class if, only if, K is a variety. To reach this result, is necessary to understand some basic concepts of universal algebra. Varieties, free algebras and identities will be essential to understand the proof of Birkhoff’s Theorem. We study that statement and how to achieve the proof of it. We also study some of the immediate consequeces of Birkhoff’s Theorem in equational logic. Moreover, there is a final section as appendix where we study some properties of lattices.ca
dc.format.extent69 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Marc Alexis Ortega Aguasca, 2017-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es-
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationÀlgebra universal-
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationTeoria dels reticlesca
dc.subject.otherUniversal algebra-
dc.subject.otherBachelor's theses-
dc.subject.otherLattice theoryen
dc.titleEl teorema de Birkhoffca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria512.58 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons