Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/127239
Title: | Contractive inequalitie for Bergman spaces and multiplicative Hankel forms. |
Author: | Bayart, Frédéric Brevig, Ole Fredrik Haimi, Antti Ortega Cerdà, Joaquim Perfekt, Karl-Mikael |
Keywords: | Funcions de variables complexes Àlgebres de funcions Funcions analítiques Operadors lineals Teoria d'operadors Functions of complex variables Function algebras Analytic functions Linear operators Operator theory |
Issue Date: | Jan-2019 |
Publisher: | American Mathematical Society (AMS) |
Abstract: | Abstract. We consider sharp inequalities for Bergman spaces of the unit disc, establishing analogues of the inequality in Carleman's proof of the isoperimet- ric inequality and of Weissler's inequality for dilations. By contractivity and a standard tensorization procedure, the unit disc inequalities yield correspond- ing inequalities for the Bergman spaces of Dirichlet series. We use these results to study weighted multiplicative Hankel forms associated with the Bergman spaces of Dirichlet series, reproducing most of the known results on multi- plicative Hankel forms associated with the Hardy spaces of Dirichlet series. In addition, we find a direct relationship between the two types of forms which does not exist in lower dimensions. Finally, we produce some counterexamples concerning Carleson measures on the infinite polydisc. |
Note: | Reproducció del document publicat a: https://doi.org/10.1090/tran/7290 |
It is part of: | Transactions of the American Mathematical Society, 2019, vol. 371, num. 1, p. 681-707 |
URI: | https://hdl.handle.net/2445/127239 |
Related resource: | https://doi.org/10.1090/tran/7290 |
ISSN: | 0002-9947 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
671642.pdf | 370.9 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License