Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/129629
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBatlle Gelabert, Xavier-
dc.contributor.authorPérez, N.-
dc.contributor.authorGuardia, Pablo-
dc.contributor.authorIglesias, Òscar-
dc.contributor.authorLabarta, Amílcar-
dc.contributor.authorBartolomé, F.-
dc.contributor.authorGarcía, L. M.-
dc.contributor.authorBartolomé, J.-
dc.contributor.authorRoca, Alejandro G.-
dc.contributor.authorMorales, M. P.-
dc.contributor.authorSerna, C. J.-
dc.date.accessioned2019-03-05T12:28:51Z-
dc.date.available2019-03-05T12:28:51Z-
dc.date.issued2011-04-04-
dc.identifier.issn0021-8979-
dc.identifier.urihttp://hdl.handle.net/2445/129629-
dc.description.abstractThe magnetic behavior of Fe3-xO4 nanoparticles synthesized by either high-temperature decomposition of an organic iron precursor or low-temperature coprecipitation in aqueous conditions is compared. Transmission electron microscopy, x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and magnetization measurements show that nanoparticles synthesized by thermal decomposition display high crystal quality and bulklike magnetic and electronic properties, while nanoparticles synthesized by coprecipitation show much poorer crystallinity and particlelike phenomenology, including reduced magnetization, high closure fields, and shifted hysteresis loops. The key role of the crystal quality is thus suggested, because particlelike behavior for particles larger than about 5 nm is observed only when the particles are structurally defective. These conclusions are supported by Monte Carlo simulations. It is also shown that thermal decomposition is capable of producing nanoparticles that, after further stabilization in physiological conditions, are suitable for biomedical applications such as magnetic resonance imaging or biodistribution studies.-
dc.format.extent1 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Institute of Physics-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1063/1.3559504-
dc.relation.ispartofJournal of Applied Physics, 2011, vol. 109, num. 7, p. 07B524-1 -07B524-6-
dc.relation.urihttps://doi.org/10.1063/1.3559504-
dc.rights(c) American Institute of Physics , 2011-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationMètode de Montecarlo-
dc.subject.classificationEspectroscòpia de raigs X-
dc.subject.classificationNanopartícules-
dc.subject.classificationMetalls de transició-
dc.subject.otherMonte Carlo method-
dc.subject.otherX-ray spectroscopy-
dc.subject.otherNanoparticles-
dc.subject.otherTransition metals-
dc.titleMagnetic nanoparticles with bulk-like properties-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec586429-
dc.date.updated2019-03-05T12:28:51Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
586429.pdf1.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.