Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/130023
Title: | Biophysical properties of single rotavirus particles account for the functions of protein shells in a multilayered virus |
Author: | Jimenez-Zaragoza, Manuel Yubero, Marina P. L. Martin-Forero, Esther Caston, José R. Reguera, D. (David) Luque, Daniel de Pablo, Pedro J. Rodriguez, Javier M. |
Keywords: | RNA Física mèdica Nanoestructures Virologia RNA Medical physics Nanostructures Virology |
Issue Date: | 11-Sep-2018 |
Publisher: | eLife Sciences |
Abstract: | The functions performed by the concentric shells of multilayered dsRNA viruses require specific protein interactions that can be directly explored through their mechanical properties. We studied the stiffness, breaking force, critical strain and mechanical fatigue of individual Triple, Double and Single layered rotavirus (RV) particles. Our results, in combination with Finite Element simulations, demonstrate that the mechanics of the external layer provides the resistance needed to counteract the stringent conditions of extracellular media. Our experiments, in combination with electrostatic analyses, reveal a strong interaction between the two outer layers and how it is suppressed by the removal of calcium ions, a key step for transcription initiation. The intermediate layer presents weak hydrophobic interactions with the inner layer that allow the assembly and favor the conformational dynamics needed for transcription. Our work shows how the biophysical properties of the three shells are finely tuned to produce an infective RV virion |
Note: | Reproducció del document publicat a: https://doi.org/10.7554/eLife.37295 |
It is part of: | eLife, 2018, vol. 7, p. e37295 |
URI: | https://hdl.handle.net/2445/130023 |
Related resource: | https://doi.org/10.7554/eLife.37295 |
ISSN: | 2050-084X |
Appears in Collections: | Articles publicats en revistes (Física de la Matèria Condensada) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
688144.pdf | 2.49 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License