Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/133128
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMassaneda Clares, Francesc Xavier-
dc.contributor.authorBarber Florit, Laura-
dc.date.accessioned2019-05-14T09:02:18Z-
dc.date.available2019-05-14T09:02:18Z-
dc.date.issued2019-01-17-
dc.identifier.urihttp://hdl.handle.net/2445/133128-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Francesc Xavier Massaneda Claresca
dc.description.abstract[en] The approximation by rational functions and polynomials is one of the topics that has been studied for a long time. The aim of this text is to study the uniform approximation by rational functions and polynomials based on three theorems: Runge, Mergelyan, and Arakelian. The first one concerns uniform approximation by rational functions on compact sets. Mergelyan’s theorem is a generalization of Runge’s theorem. Finally, Arakelian’s theorem deals with uniform approximation by entire functions on possibly unbounded closed sets. We provide the proofs of these theorems and furthermore, we state connexions between them.ca
dc.format.extent43 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Laura Barber Florit, 2019-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationTeoria de l'aproximacióca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationFuncions de variables complexesca
dc.subject.classificationPolinomisca
dc.subject.otherApproximation theoryen
dc.subject.otherBachelor's theses-
dc.subject.otherFunctions of complex variablesen
dc.subject.otherPolynomialsen
dc.titleArakelian's theoremca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
memoria.pdfMemòria1.4 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons