Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCasademunt i Viader, Jaume-
dc.contributor.authorArmengol Collado, Josep-Maria-
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2019, Tutor: Jaume Casademunt Viaderca
dc.description.abstractTurbulence in active fluids has been proposed as a new universality class of turbulence. However, the mechanisms governing these flows are poorly understood. In this work, we study numerically the formation of uni-dimensional patterns in a minimal model for an active polar nematic fluid, for arbitrary values of the ow alignment coeffcient v. In addition, we determine analytically the linear stability of the asymptotic states, as a function v. We describe the complete bifurcation diagram for uniform states in 1D and show the existence of transversal (2D) instabilities, in particular in the so-called flow alignment regime jvj > 1. This result shows that the secondary instabilities leading to turbulence are not specifc of the case v = 0, thus reinforcing the conclusion that active flows constitute a new universality class of
dc.format.extent5 p.-
dc.rightscc-by-nc-nd (c) Armengol, 2019-
dc.sourceTreballs Finals de Grau (TFG) - Física-
dc.subject.classificationFormació de patrons (Física)cat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherPattern formation (Physical sciences)eng
dc.subject.otherBachelor's theseseng
dc.titleDynamics and stability of 1D patterns in active polar fluidseng
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
ARMENGOL COLLADO Josep-Maria.pdf570.03 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons