Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Fibla Salgado, 2019
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/142541

A web scraping framework for stock price modelling using deep learning methods

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

(eng) This work aims to shed light to the process of webs craping,emphasizing its im- portance in th enew ’BigData’ era with an illustrative application of such methods in financial markets. The work essentially focuses on differents craping methodolo- gies that can be used to obtain large quantities of heterogenous data in realtime. Automatization of data extraction systems is one of the main objectives pursuedin this work, immediately followed by the development of a framework for predic- tive modelling. Applying neural networks and deep learning methods to the data obtained through webscraping. The goal pursued is toprovide the reader with some remarkable notes on how these models work while allowing room for further research and improvements on the models presented.

Descripció

Treballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2018-2019, Tutor: Salvador Torra Porras

Citació

Citació

FIBLA SALGADO, Aleix. A web scraping framework for stock price modelling using deep learning methods. [consulta: 16 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/142541]

Exportar metadades

JSON - METS

Compartir registre