Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/147684
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBryan, M. T.-
dc.contributor.authorGarcía-Torres, J.-
dc.contributor.authorMartin, E. L.-
dc.contributor.authorHamilton, J. K.-
dc.contributor.authorCalero Borrallo, Carles-
dc.contributor.authorPetrov, P. G.-
dc.contributor.authorWinlove, C. P.-
dc.contributor.authorPagonabarraga Mora, Ignacio-
dc.contributor.authorTierno, Pietro-
dc.contributor.authorSagués i Mestre, Francesc-
dc.contributor.authorOgrin, F. Y.-
dc.date.accessioned2020-01-13T16:37:02Z-
dc.date.available2020-01-13T16:37:02Z-
dc.date.issued2019-04-08-
dc.identifier.issn2331-7019-
dc.identifier.urihttps://hdl.handle.net/2445/147684-
dc.description.abstractSelf-propulsion of magneto-elastic composite microswimmers is demonstrated under a uniaxial field at both the air-water and the water-substrate interfaces. The microswimmers are made of elastically linked magnetically hard Co-Ni-P and soft Co ferromagnets, fabricated using standard photolithography and electrodeposition. Swimming speed and direction are dependent on the field frequency and amplitude, reaching a maximum of 95.1 μm/s on the substrate surface. Fastest motion occurs at low frequencies via a spinning (air-water interface) or tumbling (water-substrate interface) mode that induces transient inertial motion. Higher frequencies result in low Reynolds number propagation at both interfaces via a rocking mode. Therefore, the same microswimmer can be operated as either a high or a low Reynolds number swimmer. Swimmer pairs agglomerate to form a faster superstructure that propels via spinning and rocking modes analogous to those seen in isolated swimmers. Microswimmer propulsion is driven by a combination of dipolar interactions between the Co and Co-Ni-P magnets and rotational torque due to the applied field, combined with elastic deformation and hydrodynamic interactions between different parts of the swimmer, in agreement with previous models.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Physical Society-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevApplied.11.044019-
dc.relation.ispartofPhysical Review Applied, 2019, vol. 11, num. 4, p. 044019-
dc.relation.urihttps://doi.org/10.1103/PhysRevApplied.11.044019-
dc.rights(c) American Physical Society, 2019-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationMagnetisme-
dc.subject.classificationFerromagnetisme-
dc.subject.classificationFotolitografia-
dc.subject.otherMagnetism-
dc.subject.otherFerromagnetism-
dc.subject.otherPhotolithography-
dc.titleMicroscale magneto-elastic composite swimmers at the air-water and water-solid interfaces under a uniaxial field-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec690529-
dc.date.updated2020-01-13T16:37:02Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/665440/EU//ABIOMATER-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
690529.pdf3.36 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.