Please use this identifier to cite or link to this item:
Title: Exploring genetic variation that influences brain methylation in attention-deficit/hyperactivity disorder
Author: Pineda Cirera, Laura
Shivalikanjli, Anu
Cabana Domínguez, Judit
Demontis, Ditte
Rajagopal, Veera M.
Børglum, Anders D.
Faraone, Stephen V.
Cormand Rifà, Bru
Fernàndez Castillo, Noèlia
Keywords: Trastorns per dèficit d'atenció amb hiperactivitat en els adults
Trastorns per dèficit d'atenció amb hiperactivitat en els infants
Attention deficit disorder with hyperactivity in adults
Attention deficit disorder with hyperactivity in children
Issue Date: 3-Oct-2019
Publisher: Nature Publishing Group
Abstract: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder caused by an interplay of genetic and environmental factors. Epigenetics is crucial to lasting changes in gene expression in the brain. Recent studies suggest a role for DNA methylation in ADHD. We explored the contribution to ADHD of allele-specific methylation (ASM), an epigenetic mechanism that involves SNPs correlating with differential levels of DNA methylation at CpG sites. We selected 3896 tagSNPs reported to influence methylation in human brain regions and performed a case-control association study using the summary statistics from the largest GWAS meta-analysis of ADHD, comprising 20,183 cases and 35,191 controls. We observed that genetic risk variants for ADHD are enriched in ASM SNPs and identified associations with eight tagSNPs that were significant at a 5% false discovery rate (FDR). These SNPs correlated with methylation of CpG sites lying in the promoter regions of six genes. Since methylation may affect gene expression, we inspected these ASM SNPs together with 52 ASM SNPs in high LD with them for eQTLs in brain tissues and observed that the expression of three of those genes was affected by them. ADHD risk alleles correlated with increased expression (and decreased methylation) of ARTN and PIDD1 and with a decreased expression (and increased methylation) of C2orf82. Furthermore, these three genes were predicted to have altered expression in ADHD, and genetic variants in C2orf82 correlated with brain volumes. In summary, we followed a systematic approach to identify risk variants for ADHD that correlated with differential cis-methylation, identifying three novel genes contributing to the disorder.
Note: Reproducció del document publicat a:
It is part of: Translational Psychiatry, 2019, vol. 9, num. 1, p. 242
Related resource:
ISSN: 2158-3188
Appears in Collections:Articles publicats en revistes (Genètica, Microbiologia i Estadística)

Files in This Item:
File Description SizeFormat 
691745.pdf1.46 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons