Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/151137
Title: | The geometrisation conjecture of 3-manifolds |
Author: | Prieto de la Cruz, Ángel |
Director/Tutor: | Gutiérrez Marín, Javier J. |
Keywords: | Topologia de baixa dimensió Treballs de fi de grau Varietats topològiques Varietats topològiques de dimensió 3 Low-dimensional topology Bachelor's theses Topological manifolds Three-manifolds (Topology) |
Issue Date: | 20-Jun-2019 |
Abstract: | [en] This thesis aims to be a first approach to Thurston’s geometrisation conjecture, which states that each 3-manifold decomposes canonically into pieces admitting geometric structures. Starting from the definition of a model geometry, we will see first that the only three model geometries in dimension 2 are the Euclidean, the elliptic and the hyperbolic. Then we will show how Thurston’s theorem asserts that there are a total of eight model geometries in dimension 3, and we will classify six of them as Seifert spaces. We will finish by explaining the geometrisation conjecture through a historical perspective, from the first results on sphere and torus decompositions to Perelman’s proof. We will also sketch a proof of the Poincaré conjecture as an immediate corollary. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Javier J. Gutiérrez Marín |
URI: | https://hdl.handle.net/2445/151137 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
151137.pdf | Memòria | 694.15 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License