Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/152097
Title: | Global efficency |
Author: | Corcuera Valverde, José Manuel Oller i Sala, Josep Maria |
Keywords: | Distribució (Teoria de la probabilitat) Anàlisi asimptòtica Geometria diferencial Estadística matemàtica Universitat de Barcelona. Institut de Matemàtica |
Issue Date: | 1996 |
Publisher: | Universitat de Barcelona |
Series/Report no: | Mathematics Preprint Series; 211 |
Abstract: | In this paper the global behaviour of an estimator is studied in framework of Intrinsic Analysis, (7). Two indices of performance of an estimator in a bounded region are analyzed: the average of the intrinsic risk (the loss function is the squared Rao distance) and the maximum risk. The Riemannian volume, provided by the Fisher metric on the manifold associated with the parametric model, allows us to take an average of the intrinsic risk. Cramér-Rao type integral inequalities for the integrated mean squared Rao distance of estimators are derived using variational methods, extending the work of éencov, [3]. Additionally, lower bounds for the maximum risk are also derived, by using integral expressions. |
Note: | Preprint enviat per a la seva publicació en una revista científica. |
Note: | Reproducció digital del document original en paper [CRAI Biblioteca de Matemàtiques i Informàtica - Dipòsit Departament CAIXA 37.6] |
URI: | https://hdl.handle.net/2445/152097 |
Appears in Collections: | Preprints de Matemàtiques - Mathematics Preprint Series |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MPS_N211.pdf | 944.47 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.