Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/156044
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Reverter Comes, Ferran | - |
dc.contributor.author | Vegas Lozano, Esteban | - |
dc.contributor.author | Oller i Sala, Josep Maria | - |
dc.date.accessioned | 2020-04-20T13:46:49Z | - |
dc.date.available | 2020-04-20T13:46:49Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | http://hdl.handle.net/2445/156044 | - |
dc.description.abstract | Computational methods are needed to combine diverse type of genome-wide data in a meaningful manner. Based on the kernel embedding of conditional probability distributions, a new measure for inferring the degree of association between two multivariate data sources is introduced. We analyze the performance of the proposed measure to integrate mRNA expression, DNA methylation and miRNA expression data. | - |
dc.format.extent | 10 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Springer Verlag | - |
dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1007/978-3-319-78723-7_43 | - |
dc.relation.ispartof | Lecture Notes in Computer Science, 2018, vol. 10813 LNBI, p. 501-510 | - |
dc.relation.uri | https://doi.org/10.1007/978-3-319-78723-7_43 | - |
dc.rights | (c) Springer Verlag, 2018 | - |
dc.subject.classification | Bioinformàtica | - |
dc.subject.classification | Genòmica | - |
dc.subject.other | Bioinformatics | - |
dc.subject.other | Genomics | - |
dc.title | Kernel conditional Embeddings for associating omic data types | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.idgrec | 681318 | - |
dc.date.updated | 2020-04-20T13:46:49Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Genètica, Microbiologia i Estadística) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
681318.pdf | 537.46 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.