Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/156379
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVives i Santa Eulàlia, Josep, 1963--
dc.contributor.authorZamora Font, Oriol-
dc.date.accessioned2020-04-21T10:35:56Z-
dc.date.available2020-04-21T10:35:56Z-
dc.date.issued2019-06-20-
dc.identifier.urihttps://hdl.handle.net/2445/156379-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Josep Vives i Santa Eulàliaca
dc.description.abstract[en] The aim of this project is to prove the two fundamental theorems of the theory of Lévy Processes: the Lévy-Khintchine Theorem and the Lévy-Itô Decomposition. We can interpret this two theorems as a description and classification of infinite divisible probability measures and Lévy processes, respectively. The importance of this type of probability measures and processes is that they appear in the modeling of random phenomena under certain reasonable hypothesis.ca
dc.format.extent80 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Oriol Zamora Font, 2019-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationProcessos de Lévyca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationProcessos estocàsticsca
dc.subject.classificationVariables aleatòriesca
dc.subject.classificationMoviment browniàca
dc.subject.otherLévy processesen
dc.subject.otherBachelor's theses-
dc.subject.otherStochastic processesen
dc.subject.otherRandom variablesen
dc.subject.otherBrownian movementsen
dc.titleProcessos de Lévyca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
156379.pdfMemòria770.34 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons