Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/158843
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Cantero Morán, Federico | - |
dc.contributor.advisor | Gutiérrez Marín, Javier J. | - |
dc.contributor.author | Esquirol Esteve, Josep | - |
dc.date.accessioned | 2020-05-06T10:29:57Z | - |
dc.date.available | 2020-05-06T10:29:57Z | - |
dc.date.issued | 2019-09-11 | - |
dc.identifier.uri | https://hdl.handle.net/2445/158843 | - |
dc.description | Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Director: Federico Cantero Morán i Javier J. Gutiérrez Marín | ca |
dc.description.abstract | [en] The cup- $i$ products in semi-simplicial sets are developed following the work in $[1] .$ The category of signed simplicial sets is presented, and using the cup- $i$ product formulas, we find an operation in the cochain complex of a signed semisimplicial set that gives rise to the Steenrod squares. Explicit formulas are given to compute them. | ca |
dc.format.extent | 38 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-sa (c) Esquirol Esteve, Josep, 2019 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/es/ | * |
dc.source | Màster Oficial - Matemàtica Avançada | - |
dc.subject.classification | Topologia algebraica | cat |
dc.subject.classification | Teoria de l'homotopia | cat |
dc.subject.classification | Treballs de fi de màster | cat |
dc.subject.other | Algebraic topology | eng |
dc.subject.other | Homotopy theory | eng |
dc.subject.other | Master's theses | eng |
dc.title | Steenrod squares in signed simplicial sets | ca |
dc.type | info:eu-repo/semantics/masterThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Màster Oficial - Matemàtica Avançada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
158843.pdf | Memòria | 386.17 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License