Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/164723
Title: | Harmonic measure and uniform densities |
Author: | Ortega Cerdà, Joaquim Seip, Kristian |
Keywords: | Teoria geomètrica de funcions Funcions harmòniques Teoria del potencial (Matemàtica) Geometric function theory Harmonic functions Potential theory (Mathematics) |
Issue Date: | 2004 |
Publisher: | Indiana University |
Abstract: | We study two problems concerning harmonic measure on certain 'champagne subdomains' of the unit disk $\D$. The domains that we consider are obtained by removing from $\D$ little disks around sequences of points with a uniform distribution with respect to the pseudohyperbolic metric of $\D$. We find (I) a necessary and sufficient condition on the decay of the radii of the little disks for the exterior boundary to have positive harmonic measure, and (II) describe sampling and interpolating sequences for Bergman spaces in terms of the harmonic measure on such 'champagne subdomains'. |
Note: | Versió preprint del document publicat a: https://doi.org/10.1512/iumj.2004.53.2467 |
It is part of: | Indiana University Mathematics Journal, 2004, vol. 53, num. 3, p. 905-923 |
URI: | https://hdl.handle.net/2445/164723 |
Related resource: | https://doi.org/10.1512/iumj.2004.53.2467 |
ISSN: | 0022-2518 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
512389.pdf | 310.93 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.