Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/165000
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMundet i Riera, Ignasi-
dc.contributor.authorGutiérrez von Porat, Nils-
dc.date.accessioned2020-06-10T08:12:38Z-
dc.date.available2020-06-10T08:12:38Z-
dc.date.issued2020-01-19-
dc.identifier.urihttps://hdl.handle.net/2445/165000-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Ignasi Mundet i Rieraca
dc.description.abstract[en] The theory of persistence modules originated in topological data analysis, as an abstract algebraic languange for dealing with persistent homology. The goal in this work is to study this theory. Mainly, we focus on the Normal Form Theorem and the Isometry Theorem. Finally, we define the Morse persistence modules and provide an application in approximating functions on the sphere.ca
dc.format.extent49 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Nils Gutiérrez von Porat, 2020-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationTeoria de mòdulsca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationTopologia algebraicaca
dc.subject.classificationHomologiaca
dc.subject.classificationTeoria de Morseca
dc.subject.otherModuli theoryen
dc.subject.otherBachelor's theses-
dc.subject.otherAlgebraic topologyen
dc.subject.otherHomologyen
dc.subject.otherMorse theoryen
dc.titleTeoria dels mòduls de persistènciaca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
165000.pdfMemòria625.47 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons