Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/167381
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDiez-Hermano, Sergio-
dc.contributor.authorGanfornina, Maria D.-
dc.contributor.authorVegas Lozano, Esteban-
dc.contributor.authorSanchez, Diego-
dc.date.accessioned2020-07-02T11:26:13Z-
dc.date.available2020-07-02T11:26:13Z-
dc.date.issued2020-06-04-
dc.identifier.issn1662-4548-
dc.identifier.urihttp://hdl.handle.net/2445/167381-
dc.description.abstractThe fruit fly compound eye is a premier experimental system for modeling human neurodegenerative diseases. The disruption of the retinal geometry has been historically assessed using time-consuming and poorly reliable techniques such as histology or pseudopupil manual counting. Recent semiautomated quantification approaches rely either on manual region-of-interest delimitation or engineered features to estimate the extent of degeneration. This work presents a fully automated classification pipeline of bright-field images based on orientated gradient descriptors and machine learning techniques. An initial region-of-interest extraction is performed, applying morphological kernels and Euclidean distance-to-centroid thresholding. Image classification algorithms are trained on these regions (support vector machine, decision trees, random forest, and convolutional neural network), and their performance is evaluated on independent, unseen datasets. The combinations of oriented gradient C gaussian kernel Support Vector Machine [0.97 accuracy and 0.98 area under the curve (AUC)] and fine-tuned pre-trained convolutional neural network (0.98 accuracy and 0.99 AUC) yielded the best results overall. The proposed method provides a robust quantification framework that can be generalized to address the loss of regularity in biological patterns similar to the Drosophila eye surface and speeds up the processing of large sample batches-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherFrontiers Media-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fnins.2020.00516-
dc.relation.ispartofFrontiers in Neuroscience, 2020, vol. 14, p. 516-
dc.relation.urihttps://doi.org/10.3389/fnins.2020.00516-
dc.rightscc-by (c) Diez-Hermano, Sergio et al., 2020-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Genètica, Microbiologia i Estadística)-
dc.subject.classificationDrosòfila melanogaster-
dc.subject.classificationMalalties neurodegeneratives-
dc.subject.classificationVisió-
dc.subject.otherDrosophila melanogaster-
dc.subject.otherNeurodegenerative Diseases-
dc.subject.otherVisión-
dc.titleMachine Learning representation of loss of eye regularity in a drosophila neurodegenerative model-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec702427-
dc.date.updated2020-07-02T11:26:13Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid32581679-
Appears in Collections:Articles publicats en revistes (Genètica, Microbiologia i Estadística)

Files in This Item:
File Description SizeFormat 
702427.pdf5.89 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons