Please use this identifier to cite or link to this item:
Title: K3 surfaces: moduli spaces and Hilbert schemes
Author: Costa Farràs, Laura
Keywords: Esquemes de Hilbert
Teoria de mòduls
Superfícies algebraiques
Hilbert schemes
Moduli theory
Algebraic surfaces
Issue Date: 1998
Publisher: Universitat de Barcelona
Abstract: Let $X$ be an algebraic $K3$ surface. Fix an ample divisor $H$ on $X,L\in Pic(X)$ and $c_2\in\mathbb{Z}$. Let $M_H(r; L, c_2)$ be the moduli space of rank $r,H$-stable vector bundles $E$ over $X$ with det($E) = L$ and $c_2(E) = c_2$. The goal of this paper is to determine invariants ($r; c_1, c_2$) for which $M_H(r; L, c_2)$ is birational to some Hilbert scheme $Hilb^l(X)$.
Note: Reproducció del document publicat a:
It is part of: Collectanea Mathematica, 1998, vol. 49, núm. 2-3, p. 273-282
ISSN: 0010-0757
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
152310.pdf100.48 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.