Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/171396
Title: | Cardinal Arithmetic: From Silver’s Theorem to Shelah’s PCF Theory |
Author: | Gallart Rodríguez, Curial |
Director/Tutor: | Bagaria, Joan |
Keywords: | Lògica matemàtica Teoria de conjunts Nombres cardinals Treballs de fi de màster Mathematical logic Set theory Cardinal numbers Master's theses |
Issue Date: | Oct-2020 |
Abstract: | The main goal of this master’s thesis is to give a detailed description of the major ZFC advances in cardinal arithmetic from Silver’s Theorem to Shelah’s pcf theory and his bound on 2אω. In our attempt to make this thesis as self-contained as possible, we have devoted the first chapter to review the most elementary concepts of set theory, which include all the classical results from the first period of developement of cardinal arithmetic, from 1870 to 1930, due to Cantor, Hausdorff, König, and Tarski. |
Note: | Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona, Curs: 2019-2020, Tutor: Joan Bagaria Pigrau |
URI: | https://hdl.handle.net/2445/171396 |
Appears in Collections: | Màster Oficial - Pure and Applied Logic / Lògica Pura i aplicada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TFM_Gallart Rodríguez_Curial.pdf | 868.54 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License