Please use this identifier to cite or link to this item:
Title: Supporting the Sensory Panel to Grade Virgin Olive Oils: An In-House-Validated Screening Tool by Volatile Fingerprinting and Chemometrics
Author: Quintanilla-Casas, Beatriz
Marin, Marco
Guardiola Ibarz, Francesc
García-González, Diego Luis
Barbier, Sara
Bendini, Alessandra
Gallina Toschi, Tullia
Vichi, S. (Stefania)
Tres Oliver, Alba
Keywords: Oli d'oliva
Compostos orgànics volàtils
Olive oil
Volatile organic compounds
Issue Date: 21-Oct-2020
Publisher: MDPI
Abstract: The commercial category of virgin olive oil is currently assigned on the basis of chemical-physical and sensory parameters following official methods. Considering the limited number of samples that can be analysed daily by a sensory panel, an instrumental screening tool could be supportive by reducing the assessors' workload and improving their performance. The present work aims to in-house validate a screening strategy consisting of two sequential binary partial least squares-discriminant analysis (PLS-DA) models that was suggested to be successful in a proof-of-concept study. This approach is based on the volatile fraction fingerprint obtained by HS-SPME-GC-MS from more than 300 virgin olive oils from two crop seasons graded by six different sensory panels into extra virgin, virgin or lampante categories. Uncertainty ranges were set for the binary classification models according to sensitivity and specificity by means of receiver operating characteristics (ROC) curves, aiming to identify boundary samples. Thereby, performing the screening approach, only the virgin olive oils classified as uncertain (23.3%) would be assessed by a sensory panel, while the rest would be directly classified into a given commercial category (78.9% of correct classification). The sensory panel's workload would be reduced to less than one-third of the samples. A highly reliable classification of samples would be achieved (84.0%) by combining the proposed screening tool with the reference method (panel test) for the assessment of uncertain samples.
Note: Reproducció del document publicat a:
It is part of: Foods, 2020, vol. 9, num. 10, p. 1509
Related resource:
ISSN: 2304-8158
Appears in Collections:Articles publicats en revistes (Nutrició, Ciències de l'Alimentació i Gastronomia)

Files in This Item:
File Description SizeFormat 
703787.pdf734.72 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons