Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/172580Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Carroll, Tom | - |
| dc.contributor.author | Massaneda Clares, Francesc Xavier | - |
| dc.contributor.author | Ortega Cerdà, Joaquim | - |
| dc.date.accessioned | 2020-12-07T11:19:45Z | - |
| dc.date.available | 2020-12-07T11:19:45Z | - |
| dc.date.issued | 2020-03-13 | - |
| dc.identifier.issn | 0024-6093 | - |
| dc.identifier.uri | https://hdl.handle.net/2445/172580 | - |
| dc.description.abstract | Abstract. We improve some recent results of Sagiv and Steinerberger that quantify the following uncertainty principle: for a function $f$ with mean zero, either the size of the zero set of the function or the cost of transporting the mass of the positive part of $f$ to its negative part must be big. We also provide a sharp upper estimate of the transport cost of the positive part of an eigenfunction of the Laplacian. This proves a conjecture of Steinerberger and provides a lower bound of the size of the nodal set of the eigenfunction. | - |
| dc.format.extent | 16 p. | - |
| dc.format.mimetype | application/pdf | - |
| dc.language.iso | eng | - |
| dc.publisher | London Mathematical Society | - |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1112/blms.12390 | - |
| dc.relation.ispartof | Bulletin of the London Mathematical Society, 2020, vol. 52, num. 6, p. 1158-1173 | - |
| dc.relation.uri | https://doi.org/10.1112/blms.12390 | - |
| dc.rights | (c) London Mathematical Society, 2020 | - |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
| dc.subject.classification | Teoria de la mesura geomètrica | - |
| dc.subject.classification | Equacions en derivades parcials | - |
| dc.subject.classification | Càlcul de variacions | - |
| dc.subject.classification | Optimització matemàtica | - |
| dc.subject.classification | Anàlisi global (Matemàtica) | - |
| dc.subject.other | Geometric measure theory | - |
| dc.subject.other | Partial differential equations | - |
| dc.subject.other | Calculus of variations | - |
| dc.subject.other | Mathematical optimization | - |
| dc.subject.other | Global analysis (Mathematics) | - |
| dc.title | An enhanced uncertainty principle for the Vaserstein distance | - |
| dc.type | info:eu-repo/semantics/article | - |
| dc.type | info:eu-repo/semantics/acceptedVersion | - |
| dc.identifier.idgrec | 702846 | - |
| dc.date.updated | 2020-12-07T11:19:46Z | - |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 702846.pdf | 224.78 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
