Please use this identifier to cite or link to this item:
Title: From Boltzmann to Zipf through Shannon and Jaynes
Author: Corral, Álvaro
García del Muro y Solans, Montserrat
Keywords: Entropia
Lingüística matemàtica
Distribució (Teoria de la probabilitat)
Mathematical linguistics
Distribution (Probability theory)
Issue Date: 5-Feb-2020
Publisher: MDPI
Abstract: The word-frequency distribution provides the fundamental building blocks that generate discourse in natural language. It is well known, from empirical evidence, that the word-frequency distribution of almost any text is described by Zipf's law, at least approximately. Following Stephens and Bialek (2010), we interpret the frequency of any word as arising from the interaction potentials between its constituent letters. Indeed, Jaynes' maximum-entropy principle, with the constrains given by every empirical two-letter marginal distribution, leads to a Boltzmann distribution for word probabilities, with an energy-like function given by the sum of the all-to-all pairwise (two-letter) potentials. The so-called improved iterative-scaling algorithm allows us finding the potentials from the empirical two-letter marginals. We considerably extend Stephens and Bialek's results, applying this formalism to words with length of up to six letters from the English subset of the recently created Standardized Project Gutenberg Corpus. We find that the model is able to reproduce Zipf's law, but with some limitations: the general Zipf's power-law regime is obtained, but the probability of individual words shows considerable scattering. In this way, a pure statistical-physics framework is used to describe the probabilities of words. As a by-product, we find that both the empirical two-letter marginal distributions and the interaction-potential distributions follow well-defined statistical laws.
Note: Reproducció del document publicat a:
It is part of: Entropy, 2020, vol. 22(2), num. 179
Related resource:
ISSN: 1099-4300
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
700396.pdf1.17 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons