Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/177922
Title: | Quadratures de Txebixov a l’interval i Teorema de Bernstein |
Author: | Oliver Santacreu, Júlia |
Director/Tutor: | Marzo Sánchez, Jordi |
Keywords: | Funcions hipergeomètriques Treballs de fi de grau Polinomis ortogonals Teoria de l'aproximació Integració numèrica Hypergeometric functions Bachelor's theses Orthogonal polynomials Approximation theory Numerical integration |
Issue Date: | 21-Jun-2020 |
Abstract: | [en] In this work we will prove a theorem that Bernstein proved in 1937. This theorem states that there are no quadrature formulas with equal weights (of Chebyshev) in the interval $[-1,1]$ $$ \int_{-1}^{1} f(x) d x \approx \frac{2}{n} \sum_{k=1}^{n} f\left(x_{k}\right) $$ that are true for polynomials $f$ of degree $\leq n$, with nodes $x_{k} \in[-1,1]$, if $n \geq 10$. We will also see some results related to the distribution of these nodes when $n$ is large. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Jordi Marzo Sánchez |
URI: | https://hdl.handle.net/2445/177922 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
177922.pdf | Memòria | 525.51 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License